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Nonlinear spatial evolution of helical disturbances 
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We investigate the weakly nonlinear spatial evolution of helical disturbances of an 
axisymmetrical jet which are the analogue of three-dimensional disturbances, such as 
a single oblique wave (the wave vector is directed at an angle to the main flow velocity) 
in plane-parallel flows. It is shown that when a supercriticality is large enough, the 
perturbation amplitude A grows in the streamwise direction (along z) explosively : 
A - ( z , - z ) - ~ / ~ ,  though more slowly than in the case of essentially three-dimensional 
disturbances in the form of a pair of oblique waves ( A  - (z, - z ) - ~ ;  Goldstein & Choi 
1989). The nonlinearity needed for such a growth, is due equally to the cylindricity of 
shear layer and to the spatial character of the evolution (in the temporal problem the 
‘evolution ’ contribution is absent). At a smaller supercriticality, the evolution equation 
has a non-local (integral in z)  nonlinearity, unusual for the regime of a viscous critical 
layer. Scenarios of disturbance development for different levels of supercriticality are 
studied, with proper account taken of viscous broadening of the flow. 

1. Introduction 
A considerable number of papers have recently appeared devoted to the weakly 

nonlinear dynamics of disturbances in high-Reynolds-number shear flows in the 
presence of a critical layer. At first the main efforts were directed toward investigation 
of two-dimensional disturbances (i.e. depending only on two spatial coordinates - 
along directions of unperturbed velocity (z,) and its gradient (z,)) because, on the one 
hand, it is these disturbances that are most dangerous (from the viewpoint of stability 
loss) in an incompressible fluid and, on the other, two-dimensional problems are much 
simpler to solve. This (‘two-dimensional’) stage of theory development provided us 
with some fruitful ideas and methods, as well as with some important results that are 
worth at least outlining. 

‘Weakly nonlinear theory at high Reynolds numbers’ means that weakly 
supercritical low-amplitude perturbations in almost inviscid flows are studied. More 
strictly, this means that perturbation amplitude A ,  its growth rate y = IA-l dA/df;l and 
the inverse Reynolds number v of the unperturbed flow are small compared with unity 
(here f; is the evolution variable, i.e. time t or streamwise coordinate zl ,  depending on 
the problem under consideration ; all quantities are scaled by a characteristic velocity 
and the half-width of flow). In view of this the spatial structure of a perturbation in the 
main part of flow (out of the so-called critical layer) is reasonably well described by the 
neutral mode of inviscid linear theory, whereas viscosity, supercriticality and 
nonlinearity provide only small corrections to this structure, but it is these factors that 
determine the form of the evolution equation 
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-- - F(A), F(0) = 0 
dA 
d t  

which describes the amplitude development in c. 
The critical layer (CL) is a thin layer containing the surface z2 = zzc (the so-called 

critical level) at which the phase velocity of the perturbation is equal to the flow 
velocity. This surface is singular for the equation describing the neutral mode (e.g. the 
Rayleigh or Taylor-Goldstein equations). For a correct description of the perturbation 
structure inside the CL one should take into account viscous unsteady or nonlinear 
terms of the Navier-Stokes equations (as well as the so-called inertial terms responsible 
for the structure of the neutral mode). Each of these three is negligible far from the 
critical level and becomes of the same order as inertial terms only at (small) specific 
distance from this level : viscous I,, unsteady? 1, or nonlinear I N ,  respectively, where 

Y (1.2) I = ,,1/3, It = y, I - Al/(Z-d 
N -  

(near the critical level the stream function of the neutral mode - A(z, - zZe)a; 01 d $ 
in all flows that we know). The largest of scales (1.2) determines the thickness 1 and 
the type of CL (the CL may be viscous, unsteady or nonlinear) and, corresponding to 
this scale, terms in the Navier-Stokes equations which, together with inertial ones, 
form the leading-order governing equation that describes the perturbation structure 
inside the CL. This equation is linear in linear (viscous and unsteady) CL regimes and 
nonlinear in the nonlinear CL regime. Note that only I,, does not vary with variation 
of A ,  hence the CL regime can change (and does really change!) in the process of 
evolution (for more details see Churilov & Shukhman 1993). 

One should distinguish between the linear/nonlinear CL (see above) and the 
linear/nonlinear problem of perturbation development or, equivalently, the linear/ 
nonlinear in A evolution equation (l.l).$ For example, we can consider the 
nonlinear evolution of a perturbation in one of the linear CL regimes (which is the 
subject of this paper) and even linear evolution in the nonlinear CL regime (e.g. 
Maslowe 1973), but in the last case we are in fact dealing with the late stage of 
nonlinear evolution (Reutov 1982). 

Let us consider now the evolution of an initially very small perturbation. At the first 
stage of development the evolution equation (1.1) is obviously linear, F(A) z yLA, 
amplitude A rises exponentially with linear growth rate yL (yL is also considered as a 
measure of supercriticality), I, = yL does not depend on A and the CL regime is linear 
- viscous (if yL < v1/3) or unsteady (if yL > v1l3). 

The ‘two-dimensional’ analysis has demonstrated that in the general case the neutral 
mode is singular at the critical level and for this reason the perturbation magnitude 
inside the CL§ is much greater than outside it. Because nonlinearity in (1.1) is 
‘produced’ inside the CL, it is relatively strong and has already become competitive 
(i.e. of the same order as yL A) in the corresponding linear CL regime (see above). Just 
after becoming competitive, the nonlinearity tries to either decelerate (‘ stabilizing ’ 
nonlinearity) or accelerate (‘destabilizing’ nonlinearity) the perturbation growth. In 

t We extend the terms ‘unsteady CL’ and ‘unsteady scale’, introduced initially for problems of 
temporal evolution, to spatial evolution. 

1 Linearity of (1.1) means that the part of F(A) nonlinear in A is small as compared with the linear 
one, rather than absence of any nonlinearity. Note that the main nonlinearity in (1.1) is due to the 
CL (for more extensive discussion see Churilov & Shukhman 1993). 

Q The amplitude is a (global) measure of the perturbation as a whole, whereas the magnitude is its 
local (at given point or in small domain) value. 



Nonlinear spatial evolution of disturbances to a jet 373 

the viscous CL regime stabilizing nonlinearity saturates the instability, and we have the 
so-called supercritical Hopf bifurcation, whereas destabilizing nonlinearity leads to 
explosive growth of the perturbation : A - (to - QD-l12. In this case the unsteady scale lt 
rises with A ,  then becomes greater than I,, and the viscous CL regime is replaced by the 
unsteady CL regime. Most surprising is the fact that in the unsteady CL regime both 
types of nonlinearity - stabilizing as well as destabilizing - lead to explosive evolution : 

A N ( f o - Q - 5 / 2 + "  (1.3) 

(for discussion see Churilov & Shukhman 1988). Note that amplitude growth in this 
case is so fast that the unsteady scale lt remains the largest up to A N O(1) where the 
weakly nonlinear analysis becomes invalid. 

There are, however, some flows (e.g. free shear flow of an incompressible non- 
stratified fluid) in which the neutral mode is regular at the critical level (a = 0) and, 
therefore, the perturbation magnitude inside the CL is not as large. Hence, in such a 
flow the nonlinearity in the evolution equation (1.1) is much weaker than in flows with 
singular neutral modes and turns out to be non-competitive in linear CL regimes (at 
least for yL > v213). An unstable perturbation in this case rises exponentially up to a 
certain amplitude (the so-called boundary of the nonlinear CL regime) at which the 
nonlinear scale lN becomes of the same order as the corresponding linear one, and then 
continues to rise slowly in a power-like manner, A - f2 I3  (Huerre & Scott 1980; 
Churilov & Shukhman 1987; Goldstein & Hultgren 1988). For a more extensive 
discussion of 'two-dimensional' theory see Churilov & Shukhman (1993). 

In 1989 Goldstein & Choi considered the spatial evolution of a three-dimensional 
disturbance in the form of a pair of oblique waves of equal amplitude in a free shear 
flow and have shown that amplitude A increases downstream in an explosive manner, 
A N ( f ,  - QP3, while a two-dimensional (stream-aligned) wave in the same f low 
increases, as we know, much slower, A - f 2 1 3  (see above). Recently the same result for 
the temporal evolution was obtained by Wu, Lee & Cowley (1993). In view of this, 
three-dimensional perturbations can play a more important role in shear flow 
dynamics and now most investigations in this area are devoted to three-dimensional 
perturbations. 

The reason for such a dramatic difference in the behaviour of two- and three- 
dimensional disturbances at the nonlinear stage is the much stronger nonlinearity of 
the evolution equation (1.1) due to the singularity of the three-dimensional neutral 
mode at the critical level, in contrast with two-dimensional one. Namely, 6 N k2, 
A(z, -z2J1, V, N kk,  A(z ,  -z2J1, where y, k and V,, k ,  are streamwise and spanwise 
components of the perturbed velocity and wave vector, respectively; see also comment 
in parenthesis after formula (1.2). In what follows, we shall refer to this stronger 
nonlinearity as an oblique nonlinearity. 

Let us, however, pay attention to the fact that the question of oblique nonlinearity 
is not so simple. At the first sight, a shear flow is a highly anisotropic system (two 
directions, z1 and z2, are fixed by the velocity and its gradient), and the development 
of every wave with k ,  + 0 (or, more generally, depending on spanwise coordinate z3) 
seems to be described by an evolution equation with oblique nonlinearity due to the 
singularity of 5 and V, at the critical level. But it is easy to demonstrate that the 
evolution of a two-dimensional oblique disturbance of the form 

f =As,z,,t), s = z,cosp+z,sinp (1.4) 

(in a linear approximationf = A$Xz,) exp (iqs - iot) with A being a function of t or s) 
in a flow with unperturbed velocity V,(z,) is the same as the evolution of a stream- 
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aligned ( k ,  = 0) two-dimensional disturbance in the flow K(z2) cos /3. In other words, 
we can rotate the coordinate system in the (zl, z,)-plane through the angle /3 so that the 
new z1 axis is along the wave vector k ,  and see that the component of velocity normal 
to the k (while being singular) does not influence other components.? The result 
obtained (note that it is valid for the complete nonlinear system of Navier-Stokes 
equations) forms the basis for the Squire theorem, well-known in linear theory; in what 
follows, when referring to this result and its consequences, we will speak of the Squire 
theorem, realizing, however, that it is not strictly this theorem. 

Therefore, to have an oblique nonlinearity in the evolution equation one should to 
consider disturbances that are really three-dimensional. In order to reveal the role of 
the three-dimensionality, Goldstein & Choi (1989), and subsequently Wu et al. (1993), 
considered a disturbance not in the form of a single oblique wave but in the form of 
a pair of oblique waves of the same amplitude, f = Aq+(z,) cos (k, z,) exp (ikz, - iwt) 
and, as has already been pointed out above, obtained an explosive growth of amplitude 
at the nonlinear stage. 

In this paper we consider perturbations in the form of a single oblique wave and 
examine some ways of violating the Squire theorem for obtaining an oblique 
nonlinearity. It will be shown that there are at least two possibilities. One is due to the 
streamwise evolution of perturbations. The point is that in this case the amplitude is 
a function of z1 (not s!), and we cannot reduce the spatial structure of a disturbance 
to a (1.4) type (with dependence on s and z2 only). The streamwise variation of 
amplitude permits an oblique nonlinearity to manifest itself, and this leads to an 
explosive growth, though slower than in the case of a pair of waves (cf. with (1.3); 
a = 0 ; = z,) : A - (zlo - z,)-~/’. Note that in the temporal evolution problem the 
(oblique) disturbance remains two-dimensional and evolution is slow. 

The other possibility is associated with the curvature of the shear layer. We shall 
consider not a plane shear flow but an axisymmetric jet where the shear layer is 
cylindrical. Owing to the non-equivalency of the axial and azimuthal directions, it is 
impossible to totally eliminate the pole-type singularity in the perturbed velocity by a 
rotation of axes, and the oblique nonlinearity is proportional to the curvature D = d / R  
of the shear layer (here d is a typical layer width, R is the radius of its localization; the 
limit D --f 0 corresponds to a plane layer). Also in this case, however, even with a finite 
curvature D = O( l), the nonlinearity for a helical disturbance cf = A(z) $Ar) exp 
{i(kz + m# - wt)}, where r ,  #, z are cylindrical coordinates) is weak compared with the 
case of a pair of waves with azimuthal numbers + m and - m. This is because the main 
nonlinearity in the evolution equation is ‘produced’ inside the CL which is a very thin 
layer and therefore turns out to be ‘quasi-planar’ even for D = O(1) and hence 
produces ‘ attenuated ’ nonlinearity. 

In this paper a study is made of the nonlinear spatial evolution of helical 
disturbances of an axisymmetric jet, excited by an external source with frequency w and 
azimuthal number m. Such a problem was realized, for example, in a series of 
experiments reported by Cohen & Wygnanski (1987~’ b), who excited the jet by setting 
a certain frequency and azimuthal asymmetry in the form of a pattern rotating in 4 at 
the origin of jet outflow (near the nozzle). We wish, however, to consider only some 
theoretical questions, with no connection with experiment, to demonstrate the way in 
which the two above-mentioned possibilities of obtaining an oblique nonlinearity are 
realized in the case of a single-m helical wave. 

7 Note that the k-aligned component of the perturbed velocity in the neutral mode, 5 cos B + 
V, sin B, turns out to be regular at the critical level, whereas 5 and 5 are indeed singular. 



Nonlinear spatial evolution of disturbances to a jet 375 

The problem under consideration involves one more interesting result. Wu et al. 
(1993), by examining the temporal evolution of a pair of oblique waves, showed that 
in the regime of a viscous CL the evolution equation has a nonlinearity unusual for this 
CL regime: instead of a local nonlinear term (as in the Landau-Stuart-Watson 
equation), it contains a non-local (i.e. integral in the evolution variable) nonlinear term 
with a ‘memory’? which in the case of a destabilizing sign leads to an explosive growth 
of a disturbance, and in the case of a stabilizing sign it leads not simply to saturation 
but to total damping of the perturbation. It will be shown that for a single oblique 
(helical) wave the nonlinear term in the evolution equation in the regime of a viscous 
CL also has an integral form, though somewhat different than in the case of a pair of 
oblique waves. 

The paper is organized as follows. In $2 we will give information about the linear 
stability theory needed for the subsequent discussion, placing emphasis on the 
properties of weakly supercritical disturbances. In $ 3 the derivation of the nonlinear 
evolution equation (NEE) will be given, and in $4 an analysis will be made of the 
properties of its solutions. The results obtained will be discussed in $ 5 .  The Appendix 
is devoted to analysing the m = 0 mode and to taking into account effects associated 
with the viscous broadening of an unperturbed flow. 

2. Linear theory 
2.1. The model 

Let us introduce cylindrical coordinates r ,$ ,z  and consider an axial jet with 
unperturbed velocity V ,  = w(r) which is maximal at the centre and gradually decreases 
to zero toward the periphery: 

w(r) = ~ ( 1 -  $(r)) ,  

where $(r) is a monotonic function, such that $(r = 0) = - 1, $(r = 00) = 1. Quite a 
number of model profiles for jets have been considered in the literature (see, for 
example, Cohen & Wygnanski 1987a and examples therein). We do not specify w(r), 
but for illustrative purposes we will give, on occasion, results of calculations for the 
model 

w(r) = w 1 - tanh -1n- [ (A JI 
In the limit of small curvature (D  --f 0) we obtain, of course a plane shear flow. Our 
notation is related to that usually used in the plane-critical-layer literature as follows: 

r-R,+y, R,$+z, z + x ;  

V T + V ,  v4+ w, v,+u. 

In view of this the model (2.1) in the limit D + 0 becomes the widely used plane layer 
model 

-- w(r) - 1 - tanh ( y / d ) ,  
is 

where d = DR, is the shear layer width. 

t Note that while evolution equations with a non-local nonlinearity are well known in the unsteady 
CL regime, Wu et al. (1993) and Smith & Blennerhassett (1992) were the first to obtain such an 
equation in the viscous CL regime. 
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Now we shall justify studying weakly unstable modes or, equivalently, applying the 
weakly nonlinear theory to a system having a wide (in the k-space) spectrum of 
unstable modes with max, yL = O(1). This difficulty is extensively discussed in the 
literature and there are some ways to overcome it (e.g. see Goldstein & Hultgren 1988). 

We prefer to assume that a perturbation is produced by an external source which sets 
a proper frequency w and azimuthal number m. We suppose also that the amplitude 
of a perturbation generated in such a way is large enough to neglect more unstable 
disturbances that could arise from (very-low-amplitude) noise and small enough to 
obey the linear evolution equation near the source. This selected perturbation increases 
downstream, and at some distance its evolution becomes nonlinear; this is the process 
we are studying. 

The Reynolds number R e  = w d / v  is large enough that viscosity only needs to be 
taken into account inside the CL. The viscous broadening of the jet is assumed to be 
slow enough and it will be neglected in the main body of the paper, although some 
effects due to the broadening are considered in $5 and the Appendix. 

In this paper we study the spatial nonlinear evolution, i.e. the dependence of the 
perturbation amplitude on streamwise coordinate z. Because we shall do it in the 
framework of a weakly nonlinear theory, we assume that the disturbance is a 
weakly supercritical one, i.e. the frequency w is slightly less than a critical value 
w C r :  Iw-wc,I 4 w,, where w,, depends on curvature D .  Thus, in the case of a plane 
flow (D+O) in the model (2.2) o,, = w / d ,  which corresponds to the critical Strouhal 
number St,, = dw,,/w equal to unity. 

2.2. Analysis of a neutral stability 
Linear stability theory of an axisymmetric jet has been studied in sufficient detail (see, 
for example, Michalke 1965, Cohen & Wygnanski 1987a): for a number of models the 
dependence of growth rate on frequency was calculated at different m, eigenfunctions 
were obtained, etc. Since we are interested in the case of weakly unstable disturbances, 
it is necessary to know the neutral mode properties as well as the dependence of a 
critical frequency and the longitudinal wavelength on curvature D at different m. Based 
on this information one can assess, for example, the relative importance of the modes 
at different D. 

To solve the problem, we can use either the linear inviscid equation for perturbed 
pressure 

P . + p ( ; i G ) - F + k ” p  1 2w’ = 0, 

with the boundary conditions p(0)  = 0 and p +  0 as r +. 00, or the equation for the 
disturbance of the radial velocity component 

w’ v,) = 0,  ( r c -w (Yz2 ) r3 m2/r2+k2 
1 1 id’- w’/r 2m2 1 1 
r r z r  c - w  

u: + -v, + ~ 
v,-  -+k2 v ,+ -  v;+-u;--v + 

(2.4) 
with the boundary conditions u, + 0 as r + co and Iu,l < co as r + 0. Here c = w / k ,  and 
the disturbance is taken in the form - exp (i(mq5 + k z  - wt)} .  Equations (2.3) and (2.4) 
are, generally speaking, singular at r = r, (where w = c), and we need to consider the 
solution inside the CL which matches the solution of (2.3)/(2.4) at r = r , -0  to one at 
r = re + 0. In the linear theory there are only two types of CL - viscous and unsteady 
- and they both provide the same way of extending the solution through r = re - Lin’s 
indentation rule: since w: < 0, the indentation should proceed from above (Im ( r )  > 0). 
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FIGURE 1. Neutral curves of the modes m = 0, 1 , 2 , 3  for the flow model (2.1) : the dependence on the 
curvature parameter D of (a) the critical Strouhal number St = w d / m ;  (b)  the wavenumber of the 
neutral mode q = kd; (c) the velocity c of the neutral mode; (6) the position of critical level rc .  

It is easy to show that real boundary conditions require that there is no logarithmic 
contribution to expansions of the eigenfunctions (2.3) and (2.4) on the CL (see (2.15)), 
which imposes the condition 

( 2 - E ) ( T + k 2 ) + 7  1 m2 
2m2 = 0. 

Figures 1 ( a k l  (d)  show the results of calculations of neutral curves using the model 
(2.1) as well as phase velocities c and position r, for four modes: m = 0,1,2,3. The 
qualitative properties of these curves appear to be the same for other similar jet velocity 
profiles. 

Figure l ( a )  gives the D-dependences of the critical Strouhal number St = St(D), 
St = wd/w ,  d = R, D ;  the instability region of mode m lies under the respective curve. 
Let us emphasize some properties of the neutral curves: 

(i) In the case of a plane layer the critical Strouhal numbers for all modes coincide: 
St,  = 1 (see also Cohen & Wygnanski 1987~).  

(ii) With increasing parameter of curvature D, the region of unstable values of St 
expands initially and then starts to decrease, becoming zero. 
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For each of the modes m, there exists a maximum value of the parameter D at 
which it can still be unstable. In the model (2.1) modes with m > 2 are stabilized 
when D > l/m. 
At small D the widest instability region corresponds to the mode m = 0; however, 
with increasing D, the mode m = 1 becomes dominant (i.e. its growth rate 
becomes the largest one). 
For all helical modes (m =i= 0) we have r, - R,, i.e. the CL is located in the middle 
part of the shear layer. 

Lei us also give the results of analytic calculation of the neutral curves for the model 
(2.1). On the right-hand edge (at small D ) :  

St, = 1 +D-$x,D~, = 1 -:am 0'. (2.6) 

Here q = kd, GI., = m2 + 1 +n2/6- J = m2-0.2020, 

where dz = 2.8470. z2 In (2 cosh z )  
J =  I-, cosh2z 

One the left-hand edge (St < 1, q < 1) : 
for m 2 2 

for m = 1 
St = q(l+Dq2), (mD)2 = 1 - q 2 ~ D c o t ( ~ D ) ;  

St = q(l +q2),  D = 1 +q2  ln--C-- ( ; ;); 
and for m = 0 

St=q( l+D) ,  D =  1-q2 ln--C-- . ( ;  3 
Here C = 0.577216 is the Euler constant. 

2.3. Instability 
By fixing D and slightly departing from the neutral curve towards the instability region, 
i.e. assuming w = w,,-q (w,  > 0 always, except for m = 1 when D > 1, see figure 1 a) 
and k- t  k+ k,  and using the familiar procedure of perturbation theory, from (2.3) we 
obtain 

k lJ ,+o ,J ,  = 0, (2.10) 

where (2.1 1) 

The singularity in the integrals (2.11) is indented from above, and $a(~) is an 
eigenfunction of the neutral mode of pressure, calibrated by the condition $JrC)  = 1. 
Physically this means that we have chosen the amplitude of the disturbed pressure as 
an amplitude of perturbation A .  The dispersion equation (2.10) can also be written as 
a linear evolution equation. Assuming k ,  A+-idA/dz we get 

dA 
-+iw,(J,/J,) A = 0. 
dz 

(2.12) 

The spatial growth rate of a disturbance is 

yL = - Im (k,) = w1 Im ( J , / J z )  (2.13) 
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FIGURE 2. The dependene of (a) Im(J,/J,) and (b) Re(J,/J,) on D for m = 1,2,3. 

and a correction to the streamwise wavenumber is 

Akr = - w1 Re (JJJ,). (2.14) 

The quantities Im(JJJz) and Re(J,/J,) are given in figures 2(a)  and 2(b)  respectively, 
as functions of D for the model (2.1). 

To conclude this Section, we give the Frobenius expansion of the eigenfunction of 
the neutral mode of the pressure near the CL for the general case: 

= 1 +p% + s54+ ( K +  gin 151)(53 + 0154 + . . .) + ... . (2.15) 
Here 

Here 

(2.16) 

and the coefficient K can be determined only after solving the boundary-value problem 
(we do not need its explicit value). As has been pointed out above, the boundary 
conditions require v = 0 on the CL (cf. (2.5)). 

3. Derivation of the nonlinear evolution equation 
3.1 .  Scaling 

Let us make all quantities dimensionless so that the shear layer width d = 1 and the 
typical mean flow velocity W = 1 .  The dimensionless viscosity is the inverse Reynolds 
number, and the dimensionless frequency w is the Strouhal number. Let E and ,u be 
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small parameters, characterizing the disturbance amplitude, A = €2 (subsequently, the 
tilde is omitted), and supercriticality, w1 = ,uQ. To cover simultaneously the cases of 
both unsteady and viscous CL regimes, we put v = ,u37; in this case 1, N lt (see (1.2)). 
The relationship between ,u and E is established in the course of subsequent iterations. 
It is found that 

6 = p. (3.1) 

We introduce a ‘slow’ (evolution) coordinate 5 = ,uz and assume further that the 
dependence of all functions on coordinates and time has the form 

m sz 
F = F(<,Z;r) ,  where Z = z+-$-ct+,ut- 

k k ’  

The procedure for deriving the NEE has been reproduced in numerous publications; 
therefore, here we give only a brief outline. 

3.2. The outer problem 
We omit the details of the derivation and give the inner asymptotic expansion of the 
outer solution. In order to obtain it, it is sufficient to have equation (2.3) and 
relationships relating the velocity components or, v$ and v, to the perturbed pressure: 

Here vrl, u + ~ ,  vzl,pl are the fundamental harmonics (n = 1) of the velocity and pressure 
perturbations : 

ca 

f = 2 fnk ,  5) exp (inkZ), En = f,. 
n=-m 

The overbar denotes complex conjugacy. Assuming w + o -PO, k --f k - ipa/a< and 
r - r ,  = pY, from (3.2) and (2.3) we obtain 

(3.3) 

(3.4) J 

I p1 = E(p~’+,up:1)+,u2p~)+P3p13)+P4p~)+ ...), 

U r l  = E ( U 2 )  +,uU;;’ + p%Z’ + . . .), 
v$l = E ( u  V@ + UIp:  + . . .), UZ1 = “ - 1 v p  +?I:;) + . . .), -1 (-1) 

where 
p r ) = A ,  p?)=O , p (  12) = APIn+Cl Y, py’ = A K P + C ~  P,\ 

pi4) = A ( & + ~ K )  Y4+(C,l+C41nI,uYl) P; 

I 
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Here we use the notation 

" a  
1 = c-+iisz, 

a< 
a 

9% = c-+in(kw; a< 

38 1 

(3.6) 

A = A($ is the dimensionless amplitude of the neutral mode of the pressure, p1 = 
A$,(r) (see (2.15)), and T is a coefficient that has no jump on the CL. Generally 
speaking, expansions of the zeroth and second harmonics should be added to the above 
expansions, but since their matching with the asymptotic expansion of the inner 
solution proceeds automatically and does not provide any new information, we omit 
them. 

3.3. The modified solvability condition 
Now we complement (3.9) with a relationship for the coefficients C$ that are also 
involved in the expansions (3.4) and (3.5): 

(3.10) 

which is called the modified solvability condition (MSC). By calculating the coefficients 
C$ from the inner solution and substituting into (3.10), we obtain the evolution 
equation. 

In a linear approximation, when the CL is viscous or unsteady, the result is known : 
Ci-C; = - i d 4 ,  and we, of course, obtain the linear evolution equation (2.12) 
derived previously by means of the Lin indentation rule. Nonlinearity makes an 
additional contribution : 

Ci-C; = -inC4+(Ci-C;)N, (3.11) 

such that the desired nonlinear evolution equation takes the form 

(3.12) 
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3.4. The inner problem 
By denoting v,. = eV, v+ = eU, v, = w(r) + c W, and p = p o  + eP, we write the complete 
system for nonlinear equations: 

( i + w i )  

3 (3.14) 

(3.15) 

(3.16) 
av v iau aw -+-+--+- = 0 
ar r r a $  ' 

where A = r-l(a/ar) (ra/ar) + r+ aZ//aqP + a2//azz is the Laplace operator. 

variable Y (r -re  = p Y )  and retaining only terms needed subsequently: 
In view of the scaling introduced in 0 3.1 ,  we rewrite (3.13)-(3.16) by using the inner 

$ " l " ) E + p 3 + : 5 ( ' - p 3  

1 ( ry a2u 1 a2u 2avy 
p - 2 u y y + - p - 1 u y  1-p- +-+--+-- 

TC az2 r i a @  ria$ 

aw 

0 (3.17d) 

As done in the outer problem, we represent all quantities as an expansion in terms of 
harmonics 

F = {&(C, Y )  exp (iZ) + &(g, Y )  exp (2iZ) + c.c.) + &(g, Y )  (3.18) 
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and, in accordance with (3.3), we will seek each of the harmonics in the form of an 
expansion in a power series of y :  

(3.19) 

(3.20) 

'1 
Pl = P y ' + p P ~ ' + y 2 P y ' + p 3 P y + y 4 P y ) +  ... . 

= J,y+yvI]-'+y2vy)+ ..., 
u, = p-1 Ui-1) + uy' + y ul" + . . . , 
w, = y - 1 w y  + wy +ywwi" + . . . ; 

v 0 -  - E&-lF$-l' + . . .), 
uo = €@-3u;-3) +y,-2U;-2' + * . .), 
w, = E b - 3  W;3) + y-2 wy) + . . .) ; 

u2 = e(u-3ui-3) + . . .). 

the zeroth harmonic 

(3.21) 

We have written only those terms in the expansion which are important for subsequent 
calculations. The jump C; - C;, appearing in the MSC (3.10) is involved at O(ey2) of 
the expansions (3.4) and (3 .9 ,  and the main nonlinear contribution to it from the inner 
solution is O ( E ~ ~ - ~ ) ,  and this gives the scaling (3.1): E = ,us/'. In the problem of a pair 
of waves the nonlinearity is found to be stronger, - O(e3,c4), which leads to the scaling 
e = OG3) (Goldstein & Choi 1989; Wu et al. 1993). 

Subsequent calculations have a rather routine character; however, there is one new 
factor associated with the contribution of the second harmonic. In plane unstratified 
flows the second harmonic does not usually make contribution to the main nonlinearity 
(see, for example, Goldstein & Leib 1989; Shukhman 1991), while in a stratified flow, 
say, the second harmonic makes a contribution of the same order as that of the zeroth 
harmonic (Churilov & Shukhman 1988). In our problem the nonlinearity caused by the 
zeroth harmonic is attenuated by an 'incomplete violation' of the Squire theorem 
whereas the relative role of the second harmonic is enhanced by the flow curvature, and 
for these reasons they both contribute to the leading order of nonlinearity. Note that 
in a plane limit this contribution of the second harmonic vanishes. Let us outline the 
results of consecutive iterations. 

i 
the second harmonic 

3.4.1. The fundamental harmonic: Pi") 
From ( 3 . 1 7 ~ )  at O&-') we have 

Py: = 0, 

Pi"' = A ( 0 .  

whence, in view of the matching to (3.4), 

(3.22) 

3.4.2. The fundamental harmonic: PF), Ui-'), W';'), V0) 1 

From ( 3 . 1 7 ~ )  at O(1) we have Py& = 0, and matching to the outer solution gives 

Py = 0. 

(3.23) 

(3.24) 

(3.25) 
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Here k, = m/rc,  and is defined by (3.8). The procedure to be followed below will 
also be repeated in the subsequent iterations. We multiply (3.23) by k,  and (3.24) by 
k, add them together, and substitute the result into (3.25). This yields 

9 v'p: - ikw: q) = - (ki + k2) P p ) .  (3.26) 

The solution matching to (3.5) is 

and from (3.25) we find that 
k, UCcl) + k W;') = 0. 

(3.27) 

(3.28) 

Note that at this order the cylindricity has not yet manifested itself, and therefore the 
Squire theorem is valid, which precisely implies the absence of a term with asymptotic 
behaviour Y-' as I YI + co in the velocity projection onto the wave vector (see (3.28)). 

From (3.23) and (3.24) we have 

Here .@il is an operator that is the inverse of 9%. Let us give its explicit expression. If 
F(c, Y )  satisfies the equation 

does not increase exponentially as Y+ f co and tends to zero as <+ - 00, then 

or in an explicit form 

-em, Y )  = RK, y>, 

m, Y )  = =@;lac, Y>, 

I xexp{ -;(nkw:)'@) -i$(O+kw: nx Y )  R(<-xl ,  q) (3.29) 

to yield 

I 3 .  

U!-')(c, Y )  = -ik,[ O0 -ex,{ dx -;(kw:)'P) -3(52+kw: Y )  A(<-x , ) .  (3.30) 
o c  c c 

The asymptotic representation (3.30) as Y+ co is matched to (3.6). 

3.4.3. The fundamental harmonic: P y ) ,  U y ) ,  W:), v) 
From (3.17~~) at O(p) we find 

(3.31) 

We write (3.31) as 

(3.32) Pi.$ = 7 (k: + k2) IA + ( P r i ) y .  

Note that a nonlinear contribution (from the centrifugal term - V/r  in (3.17a)) is 
already present at this order. 

i 

kwc 
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From (3.17b, c) at O h )  and (3.17d) at O(1) we find 

(3.34) 

(3.35) 

These equations give Uf“, W?) and q). Note that nonlinear contributions are already 
contained in U y )  and W:); however, by virtue of the relationship for the zeroth 
harmonics Ui-3) and W F ~ ) ,  analogous to (3.28) (which will be obtained below), 

k, UiP3’ + kWc3) = 0, (3.36) 

it turns out that q) does not yet contain nonlinear contributions. At this order the 
non-zero projection of velocity onto the wave vector has already appeared : 

Note that this projection is singular in terms of the outer solution (i.e. its asymptotic 
expansion contains a term - Y-l as I YI --f a) by virtue of the last term in (3.37). Its 
origin is unassociated with taking the curvature into account but is wholly due to the 
spatial statement of the problem: it is not present in the temporal problem. 

By repeating for (3.33)-(3.35) the same procedure as in $3.4.2, we obtain the 
equation for q) : 

2ip 1 i dA ik 
kwcrc k @ dc  r ,  

2 vc,lJ-ikw; q) = - - - - l A - - ( k 2 - k 2 ) - - 2 v ~ U ~ - , ’ ) ,  

and by differentiating it, we get 

From (3.30) and (3.38), with the help of (3.29) we find 

x exp { -i-(Q +kw; Y )  ~ ( 5 - x ~  - xp>. (3.39) 
C 1 

For Uf“ and W:) we write 

(3.40) 

We need only the asymptotic representations of Uy2 and WfL for matching to 
corresponding expansion terms in (3.6) and (3.7), and the nonlinear contributions U ,  
and W,. From (3.33), (3.34) and (3.39) one can see that matching is done automatically, 
and for UrL and W,($ we have 

(3.41) 

and again k, UyL + k W:i = 0. (3.42) 

UP) = ul“2 + ul“ll., wy = Wg + Wl”L. 

@ ul“,? = - VI”’ q $ 3 3 ’ ,  @ wl”i = - vl”’ WG3’ 
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3.4.4. The fundamental harmonic: Py), q), W:), v) 
This is the last necessary order of the fundamental harmonic. The jump C; - C; will 

be determined by matching q) to (3.5). From ( 3 . 1 7 ~ )  we find Py) that is automatically 
matched to the respective order in (3.4). In the subsequent calculations we will have no 
need of P3) (or Pp)). From (3.17b, c) at 0 ( p 2 )  and from (3.17d) at 0(p) we find 

Note that, in addition to nonlinear contributions NW and Nu, the right-hand sides of 
(3.43) and (3.44) already involve nonlinear contributions in the underlined terms. For 
Nu and Nw we have 

0) u(-2) - v - 1 )  u ( - 1 )  - ik v-3) u(0) -ikW-3) u(0) _ _  1 V:) ui-3), (3.46) 
Nu=-T/I  OY 0 1Y # O  1 0 1  

Y C  

(3.47) N - - vlO) W-2) - v - 1 )  W-1) - ik u(-3) WO) - ik u/(-3) WO) 
w -  OY 0 1Y $ 0  1 0 1 ,  

From (3.43b(3.45) and (3.48) we obtain the equation for v$y: 
Here 

2 Vgy = + .9i?N. (3.49) 

and we will not give here the unwieldy expression for gL because we need only its 
asymptotic representation in the upper half-plane Y for matching to (3.5). As Y+ 00, 

from (3.49) we obtain 
v',":y - Q + SY-', (3.51) 

(see (3.4) for C,). 
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By comparing (3.52) with (3.5) and introducing p) through the relationship q) = 
p) ++Q P, for the desired jump C; - C; we have 

(3.53) 

We split into its linear and nonlinear parts: p) = pi+ p& where 

9 1 ( p & ) Y Y  = gN, (3.54) 

and 
from vL to the integral (3.53) is -in{3iC4/(kw~)}, and we finally obtain 

N 3iC4 Y-’/(kwd) as I Yl + co in the upper half-plane Y. Hence the contribution 

Cf-C- 3 3  = -inC4-$ikwi (3.55) 

and (see (3.11)) 

(q - C;), = -$ikwL (p&),, d Y. 1:” (3.56) 

To complete the derivation of the nonlinear evolution equation (NEE), it only remains 
for us to calculate a further number of contributions involved in BN: Wc3) 9 0  W3), 
(k9 Ui-2) + k W;’)) as well as the contribution from the second harmonic Ui-3) appearing 
in PYA (see (3.31), (3.32)). 

3.4.5. The zeroth harmonic: ULp3), Wc3), 6-l) 
From (3.17b, c) at O ( P - ~ ) ,  in view of (3.28) we have 

9 o n  P3) = - ( V y ) W + c . c . ) ;  g Wc3’ = -(vI”’ w’,-:’+c.c.). (3.57) 

Note that the relationship (3.36) used above follows herefrom. From (3.17d) 

(3.58) 

For Vc3) and Wc3), from (3.57) and (3.58) we get 

Note that the asymptotic representation of the zeroth harmonic 

(3.61) 

is matched to the asymptotic representation of the zeroth harmonic of the outer 
solution (not written here). 
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3.4.6. The zeroth harmonic: Uh-'), WL2) 
From (3.17b, c) at O(p-') and (3.58) we find 

%(k$ q - 2 ,  + k 
= -{ 

3.4.7. The second harmonic Ui-3) 
From (3.17b) at O(,U-~) we have 

g2 Ui-3) = - f l0)  u(-U 
1 1Y 

to yield 
(3.63) 

(Sz + kw; Y ) ]  A(<-  x,) A(<-  x, - x,). (3.64) 

3.5. Completion of the derivation of the NEE 

B y  gathering together all nonlinear contributions, we write the expression (3.50) for gN 
as 

where 

(3.65) 
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Here (Py&)y, and , denote the contributions to (Prh)y from the zeroth and 
second harmonics, respectively. All terms that do not make a contribution to the jump, 
are included in B(l0). In accordance with (3.65), we calculate contributions to the 
integral (3.56) 

W 

( p & ) y y d Y =  P. 
J-w n-1 

By designating 

2K 
7 = </c, ri = x i / c ,  h = r,(kw;)’, k,2 = k2+k2, a = 7(k:k4)2,  

Ikwcl 

A ,  = A(<-x,), A ,  = A(<-x,-x,), A ,  = A(<-~x,-x,), 
we write 

J”) = --a$l:dTll:dT27:(l -h7f7 , )E1(7 , ,7 , )A1A2~~,  

$7) = $5) 

J(’) = - a 2  d7, 1: d7, 7, A ,  A ,  A, E,(T~, 72) 
r c  0 

Here 
E,(x, y )  = exp { -$h(2x3 + 3x2y)}, E,(x, y )  = exp { - h(xy2 - 2x2y)), 

E,(x,y) = exp{-$h(~~+y~+(x+y)~) ) ,  

J%, y ,  z) = exp { - h [$z3 + z2(3y + 2 ~ )  + z(2y2 + ~XY)]} .  

(3.66) 

(3.67) 

Note that the contributions Z4) and f 6 )  contain amplitude derivatives with respect 
to 7. Their origin, as well as that of the contribution $’), is wholly associated with the 
spatial formulation of the problem, while they are not present in the temporal problem. 
These contributions remain in a plane model; the other contributions, however, are 
due to the finite curvature and disappear as D -+ 0. 
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derivatives with respect to 7. To do so, note that 
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The contributions z4) and z6) can be transformed to a form not containing 

On substituting (3.66) into (3.56) and subsequently into (3.12), we obtain the desired 
NEE : 

(3.69) 

4. Analysis of the evolution equation 
4.1. Evolution in the regime of an unsteady CL 

If the initial supercriticality is large enough, such that the spatial growth rate y L  + Y ~ / ~ ,  
one can expand (3.69) in powers of h 4 1. On passing to 'physical' variables as well as, 
for the sake of convenience, assuming x l + x ,  = 5, x1 = [cr and introducing the 
amplitude B = A exp (- i(Ak, z), we obtain at the leading order the NEE 

where (4.2) 

Other terms in the expansion of (3.69) give only small corrections to (4.1) and can be 
neglected. Let us emphasize once again the dual origin of the oblique nonlinearity: 
both the finiteness of the curvature (the term - 2 / r ,  in (4.2)) and the streamwise 
variation of amplitude (the term - wi/c  - l/d) contribute to it, and both of these 
contributions are of the same sign and are comparable to each other in the case of a 
not too small curvature. 

Equation (4.1) was obtained and investigated in detail by Goldstein & Leib (1989) 
and Shukhman (1991), who solved quite different problems: the nonlinearity in 
Goldstein & Leib (1989) was due to a pole-type singularity of a temperature 
perturbation on the CL, while in Shukhman (1991) it was associated with a logarithmic 
singularity of the neutral mode on the CL which arises in a two-dimensional problem 

+ = arg(J,/rc)-x, JV = 2nlrc/J,I(2k,2k4/wi)2 (: -+- IY) . 
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1 .o 

D 
0.5 

FIGURE 3. The dependence of arg(J,) on D for m = 1,2,3.  

if the radiation condition at infinity (in y or in r )  is imposed rather than one of 
vanishing of perturbation (or if there are several CLs simultaneously). The character 
of the disturbance evolution governed by (4.1) is defined by the only parameter, the 
phase $. A growth of amplitude B, after the nonlinearity threshold is reached (when 
the nonlinear term becomes of order yL B, i.e. competitive) 

B - B, = O(Y; /~)  

B (z ,  -z)-5/2+iP(@), 

proceeds explosively : 
(4.3) 

(4.4) 

The dependence p($) was investigated by Goldstein & Leib (1989) and Shukhman 
(1991). When --in < $ < f~ this dependence is single-valued, and the asymptotic 
representation of the solution of NEE (4.1) is indeed described by (4.4). When in < 
I$l < x the function p($) becomes two-valued. In view of the nonlinear character of 
(4.1) the asymptotic behaviour of B(z) (as z + 2,) is now described neither by (4.4), nor 
by a sum of two terms of the form (4.4), but - as shown by the numerical calculations 
of these authors - remains explosive as before. 

In the model (2.1) as D + 0 : 

J1 = 2in, J2/rc = 2(2+i~) ,  arg(J,/r,) = arctan($) x 0.32~. 

The dependence of arg (A / r , )  on D is calculated numerically and is presented in figure 
3. One can see that (except for a small region for the mode m = 1) arg(J,/r,) varies 
in the range from 0 . 3 2 ~  as D+O to fn as D+ l / m ,  hence $ lies in the region -X < 

4.2. The evolution in the regime of a viscous CL 
$ < -in. 

4.2.1. NEE: local and non-local nonlinearity 
Let us obtain the NEE in the regime of a viscous CL, y + v1l3, where y - A-l dA/dz 

is a local spatial growth rate. Formally, this is achieved through an expansion in terms 
of the small parameter A- l .  At first glance, all ‘delays’ should be put equal to zero 
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(because there is no 'memory' in the case of a 'large' viscosity), and all amplitudes 
should be carried outside the integral sign. It is easy to perform the remaining 
integrations, and we obtain a nonlinear term of the form - AIAI2 This is actually 
the main term of the expansion, but it can be small and go to zero at some values of 
the parameters, so the next term then becomes important. Such a situation occurs in 
our problem in the case of a small curvature. It appears that the next term of the 
expansion is of 0(A3h-4/3(y/h1/3)1/2), i.e. it contains - with respect to the main term - 
a factor ( y / ~ ~ / ~ ) ~ / ~  = ( l t / l , )1 /2  4 1 (see (1.2)). Contributions at this order are made only 
by the first two of the four terms involved in the right-hand side of (3.69). The 
exponents in them that depend on 71 and T~ are linear in 72 and therefore the 72- 

associated delay must be taken into account. The result is 

(d/dz-2yL) 1A(z)I2 = 4x Re(vC/J,)(k,2k$/wL)' 

where i = v(kwL)2, and 

I = (2/3)2/3r($)[$+pF($,&i; 2 

1; a( 1 - a) d a  dp{$ - a( 1 - r )  + ap[:a2p2 + ap( 3 - a) + 2( 1 - CT) ] } -~ '~ .  I = 3-4/3 s,' 0 

Here F and r are, respectively, a hypergeometric function and a gamma-function. 
Calculations yield 1, = 0.05443 and I = 3.483 50. 

Thus, the nonlinear term in the regime of a viscous CL contains two contributions, 
local and non-local. The local contribution is entirely due to the curvature of the shear 
layer and vanishes as the curvature tends to zero. In this case the non-local term in (4.5) 
becomes a leading one. 

If the curvature is not small, i.e. D = 0(1), the non-local nonlinearity is not 
competitive compared with the local one, and we obtain the usual Landau-Stuart- 
Watson equation with a stabilizing nonlinearity because Re ( r J 4 )  > 0 (see figure 3). 
The amplitude reaches saturation at the level 

(4.7) 413 1/2 
A s a t  = ( Y L V  1 . 

4.2.2. The limit of a plane model 
In the limiting case of a plane model the NEE has the form 

where b, = - ~ C ( ~ C C ) ' ~ ~  (w;/c) Re (rC/&)(k,2 k4/w;)'. (4.9) 

Recently an analogous equation 

(4.10) 

was obtained (Smith & Blennerhassett 1992; Wu et al. 1993) for the temporal evolution 
of a disturbance in the form of a pair of oblique waves but with a somewhat different 
structure of the non-local nonlinear term (cf. (4.8)). The origin of a non-local 
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nonlinearity is associated with the dynamics of the intermediate region (connecting the 
CL region with an external flow) where viscous and unsteady terms in the equations 
become of the same order of magnitude.7 The nonlinearity in (4.10), as demonstrated 
by Wu et al. (1993), depending on the sign of g ,  leads to either an explosive growth of 
a disturbance or its exponential decay. 

A different picture is provided by NEE (4.8): irrespective of the sign of b,, it 
describes the growth of a disturbance (in our problem b, > 0, but we shall consider 
both signs). As b, > 0, after the disturbance reaches the nonlinearity threshold, 

the exponential growth is replaced with a slower power-law one 

(4.11) 

(4.12) 

which proceeds in the ‘quasi-stationary’ regime (when the left-hand side of (4.8) is 
much less than each of the terms in the right-hand side). If there is no stabilizing factor 
whatsoever, the disturbance, by reaching amplitude A - v2I3, moves into the regime of 
a nonlinear CL. 

As b, < 0 ,  the exponential growth, after reaching the threshold of nonlinearity 
(4.1 I), is replaced with an explosive one. This a strongly unsteady process, to which 
there corresponds a balance of the evolution (d/dz) and nonlinear terms in (4.8). We 
find 

(4.13) 

The growth rate increases: y - O(A4/v3), and when y - v1I3, i.e. as the amplitude 
reaches A = O ( v 5 9 ,  there is a transition to the regime of an unsteady CL. We shall not 
investigate the case b, < 0 in more detail because in (4.8) b, > 0 (although the 
multiplier (3/rc + w72c), involved in (4.5) does change its sign in the case of a rather 
small curvature (D z 1 /7 in the model (2. l)), the local stabilizing nonlinearity at such 
D is already essential, and the explosive regime (4.13), described above, is not realized). 

4.3. The picture of the evolution as a whole 
Let us represent the evolution scenarios obtained on an amplitudesupercriticality 
diagram. It is convenient to write the NEE (3.68) in a symbolic form 

14 

dA 
dz 
_ _  (4.14) 

c, and c, are coefficients of order unity, and 1 is the CL scale (either unsteady 1, or 
viscous I,, see (1.2)). This equation reproduces all the relevant properties of an exact 
NEE (3.68) and would be quite sufficient for a qualitative analysis. 

4.3.1. The evolution at D = 0(1) 
A diagram for the case D = O(1) is given in figure 4. If supercriticality is small, 

y, < v1I3, the disturbance starts from the region of a viscous CL and does not leave it 
throughout the evolution up to saturation at A,,, - yZlZ v2l3. At larger supercriticality, 

t Wu et al. (1993) have called this region the ‘diffusion layer’. But in critical-layer literature there 
is already an analogous term: the layers near the ‘cat’s eyes’ boundary are called ‘diffusive layers’. 
In view of this we prefer to use the term ‘intermediate region’. 
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,213 

I A I ,516 

,113 

Y L  

FIGURE 4. The amplitude-supercriticality diagram for the case D = O(1). The region of an unsteady 
CL is shaded. Curve 1, threshold of nonlinearity for a viscous CL, it also represents the level of 
saturation A = A ,  - ( y , , ~ ~ ' ~ ) ~ ' ~ ;  curve 2, threshold of nonlinearity for an unsteady CL: A = A ,  - 
y;I2. The vertical arrows indicate the various evolutionary stages : 

+ - A - exp (yL z), =- - A  N (2, - z)-*I2. 

,213 

, 5 1 6 ~ ~ 1 / 2  

I A I ,516 

0 2  ,113 ,113 D 

Y L  

FIGURE 5 .  The amplitude-supercriticality diagram for the case v1I3 << D << 1. The threshold of 
nonlinearity is shown by a heavy line. Curve 3 corresponds to the level of saturation in the regime 
of a viscous CL. The equations for the curves are: 1, A = A,  - (yLv3)lI4; 2, A = A ,  - yi12; 3, A = 
A ,  - (yL V * / ~ / D ) ~ ' ~ .  The wavy arrow denotes a power-law growth: IAl - Z I / ~ .  

yL > v113, the disturbance starts from the region of an unsteady CL and, by reaching 
the threshold of nonlinearity (4.3), switches to the explosive regime IAl N ( z , - z ) - ~ / ~ .  
The growth rate grows fast, and the unsteady scale lt - y = A215 always remains larger 
than the nonlinear one, I, - All2, such that the nonlinear CL regime is not realized. 

4.3.2. The evolution at D -4 1 
In the case D 4 1 the picture in the region of an unsteady CL remains unchanged. 

However, in the region of small supercriticalities, yL 4 v113, the evolution appears 
different. If D > v113, the local nonlinearity is capable of stabilizing the growth of the 
disturbance in the regime of a viscous CL throughout the region 0 < yL < v1I3 (see 
figure 5) .  If, however, D < v1I3, in the range of supercriticalities D < yL < v113 this 
stabilizing effect turns out to be insufficient, and the evolution continues (at A > v 2 9  
in the regime of a nonlinear CL. The transition to the regime of a nonlinear CL and 
the subsequent evolution calls, generally speaking, for a separate analysis, but we will 
try to predict the result qualitatively. It seems likely that after transition the amplitude 
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would also grow with a power-like law but with a different power than in the regime 
of a viscous CL (see (4.12)). We shall obtain the desired power from the following 
considerations. In the regime of a nonlinear CL, rearrangement of the flow inside the 
CL provides a reduction of the linear growth rate (see, for example, Huerre & Scott 
1980; Churilov & Shukhman 1987): yr,+(yL v / A ~ / ~ ) .  On the other hand, the non-local 
nonlinear term (see (4.8)) that has the order ( y / ~ l / ~ ) l / ~  v - ~ / ~ A ~  originates not from the 
CL but from the intermediate region, and it seems to be unchanged. Therefore, a model 
NEE has the form 

(4.15) 

From the balance of the terms involved in the right-hand side we find y - v5y:Ap7, 
which yields 

(4.16) 

This is a very slow growth, and it will necessarily stop by reaching a certain amplitude 
if some stabilizing or dissipative factor is further taken into account. In $ 5  the influence 
on the perturbation development of such a factor, a viscous broadening of the jet, is 
discussed in detail. 

2 5 1/7 l / 7  A - ( y Z , v )  * 

5.  Discussion 
Thus, we have demonstrated that for yL > v1l3 the oblique nonlinearity, even in the 

case of a single wave, leads to an explosive growth, IAl - ( Z ~ - Z ) - ~ / ~ ,  due to both the 
finite curvature and the streamwise variation of amplitude. This growth continues up 
to amplitudes A = O( l), where the weakly nonlinear theory becomes invalid. 

In our reasoning it was implicitly assumed that the coefficient in the nonlinear term 
(3.68), proportional to k:((k4d)2 in a dimensional form), is of order unity. However, 
if curvature D is small and azimuthal number m is not large, the oblique nonlinearity 
is reduced by factor N (rnD)2. Indeed, (k4 d)' = (m/rJ2  N (md/R)' = (mD)'. Therefore, 
when ( w z D ) ~  4 1 (and for a plane problem when (k ,  d)' 4 IT) taking into account the 
two-dimensional nonlinearity becomes important. Let us analyse to what this would 
lead. We begin with the region y L  % v1l3. In the regime of an unsteady CL the evolution 
equation can be written in a symbolic form 

dz (5.1) 

Here the term containing c3 describes a two-dimensional nonlinearity (nonlinear 
reducing of the growth rate, see, for example, Churilov & Shukhman 1987; see also 
(5.4) and comments on it). 

From (5.1) it is evident that oblique nonlinearity is important only if yL 4 ( ~ Z D ) ~ .  In 
the case of a larger supercriticality, it is unimportant, and the evolution of quasi-two- 
dimensional disturbances does not differ from the evolution of two-dimensional 
disturbances. Figure 6 shows part of the amplitude-supercriticality diagram for quasi- 

t Note that in a plane problem the temporal evolution in the case of small k ,  d was treated by Wu 
(1993) who considered a disturbance modulated in the spanwise direction, i.e. having a continuum 
in the k ,  spectrum. In the case of an axial jet the discreteness of m does not admit such an approach. 
Note that the NEE obtained by Wu (1993) in the regime of a viscous CL also has a non-local 
nonlinearity but of a rather different structure. 
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FIGURE 6. The amplitude-supercriticality diagram for quasi-two-dimensional disturbances (rnD)' + 1. 
Curve 1 ( A  = A ,  - y t )  and curve 2 ( A  = A ,  - yE/2/(rnD)) are thresholds of nonlinearity. The wavy 
arrow denotes a power-law growth, A - z2I3, while the wavy arrow labelled ? denotes a power-law 
growth with an exponent that is not yet established. 

two-dimensional disturbances for not too small (mD)2:  v1/3 < (mD)2 < 1 in the region 
y L  > v1l3. If y L  > (mD)', the disturbance grows exponentially to the nonlinearity 
threshold A - A ,  z y i  and then moves into the regime of a nonlinear CL while 
continuing to grow as a power law, A - z ' / ~ .  If, however, yL < (mD)2, the disturbance, 
on reaching the level A - A ,  x yL/'/(mD), begins to grow explosively, A - ( z ,  - z)-~' ' .  
However, although the growth rate increases 

this increase is insufficiently fast for the regime of an unsteady CL to become self- 
maintaining, i.e. in terms of weakly nonlinear theory ( A  < 1 )  no transition to the 
regime of a nonlinear CL would occur. Indeed, from (5.2) it follows that when 

(5.3) 
the nonlinear scale IN =A1/'  would exceed the unsteady scale 1, = y ,  and the 
disturbance would switch to the regime of a nonlinear CL. The transition to the regime 
of a nonlinear CL from the explosive growth stage has not been studied previously and 
calls for a separate consideration. In figure 6 the arrow corresponding to this stage is 
labelled with a question-mark. 

In the region y L  < v1l3, in addition to the two-dimensional nonlinearity, a further 
effect, a viscous broadening of the flow, influences the evolution of quasi-two- 
dimensional (mD < 1) disturbances. Goldstein & Hultgren (1988, hereinafter referred 
to as GH), by considering an example of two-dimensional disturbances in a plane shear 
flow, showed that such a broadening leads to a stabilization of the flow with respect 
to a given disturbance at some distance z = z ,  from the place of jet outflow. (Note that 
z ,  depends on disturbance characteristics, in particular, on supercriticality.) As a result 
of this stabilization, the disturbance reaches, when z = z,, a maximum amplitude and 
then decays until it complet.ely disappears. 

In the Appendix, for the case m = 0 (a good approximation for mD < l), a NEE 
(A 8) is derived which takes into account both a viscous broadening and curvature, and 
permits us to consider the case mD < 1, y L  < v1I3 in a self-consistent manner. 
Moreover, equation (A 8) is valid not only in the regime of a nonlinear CL (like a 
corresponding NEE in GH) but also in the regime of a viscous CL, as well as at the 
stage of transition between them. Hence, it permits us to consider the whole evolution 
of the perturbation, beginning from its early (linear) stage, and to generalize the results 
reported by GH. 

y [(mD)'A2]1/5, (5.2) 

A - A* = ( w z D ) ~  
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For studying the evolution of quasi-two-dimensional disturbances on a slowly 
broadening jet it is convenient to use a NEE (A 8) in the form (A 9): 

dA 
dz (5.4) 

This equation is the generalized (and corrected, see GH) NEE derived by Huerre & 
Scott (1980). We see in it two physical effects which determine the perturbation 
evolution. First, the linear growth rate decreases linearly in z due to a broadening. 
Secondly, the nonlinear reduction of this growth rate (by factor @) takes place with an 
increase of amplitude, as usual. The function @(s) can be calculated analytically for 
s 4 1 and s 9 1 (see Appendix): 

bs, s 6 1 
@(s) = 

and numerically for arbitrary s > 0, and it is reasonably well approximated by the 
simple formula 

bs 
@(s) = - 

1 +bs' 

On substituting it into (5.4), we can get an analytic solution 

where A, = A(0)  is the initial amplitude. From (5 .5 )  it is evident that the amplitude 
reaches a maximum A = A,,, when z = z ,  = yL/ (gv) ,  

and then decreases to zero. It is easy to see that if z, is less than the inverse growth rate, 
yL1, the dissipation starts almost immediately, following an insignificant growth in 
amplitude. Therefore, when y L  < vl/', there is no cause for speaking of an instability, 
so fast is the flow stabilized by a viscous broadening. It is interesting to note that an 
amplification of the disturbance, Amax/Ao will also be insignificant when y L  > vl/' if its 
initial amplitude is sufficiently large: A, 9 y4Li3. In the intermediate case (yL  > v1/2, 
A, 4 ?:I3) the amplification is essential. 

Figure 7 demonstrates the dependence of A,,, on A ,  for y L  > vl/'. As long as the 
initial amplitude is small enough, the coefficient of amplification is constant and is 
KO = exp(yi/(rv)}, and the entire disturbance evolution proceeds in the regime of a 
viscous CL. When A ,  KO > v ' / ~ ,  part of the disturbance evolution now proceeds in the 
regime of a nonlinear CL, and the coefficient of amplification decreases with an 
increase of this part. As a result, in the region y4L13/K0 < A ,  < y y ,  A,,, almost does 
not depend on A,: A,,, - y4Li3 (it is this region to which the results of GH pertain). 
Finally, when A, > yi i3 the amplification coefficient, as has already been pointed out, 
is virtually unity. 

We wish to note in conclusion that a viscous broadening of the flow, when mD < 1, 
is in a sense a fateful factor that does not permit the disturbance to reach an 
amplitude of order unity. Indeed, it has been shown above that when (mD)z % 1, even 
without taking the viscous broadening into account, the disturbance either is stabilized 
at a low level or passes to the regime of a nonlinear CL where its growth is heavily 
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FIGURE 7. The dependence of the maximum achievable amplitude A,,, on the initial amplitude A,  
for a disturbance that starts from the region of small supercriticality, vl / *  < y L  < v1l3, when the 
viscous broadening of the unperturbed flow is taken into account. 

retarded (becomes power-law). Owing to this, the broadening effect at any yL has time 
to stop the perturbation growth at small amplitudes. The only case when the amplitude 
reaches O( 1) is an explosive development when mD = O( 1) and yL > v1I3. 

We are grateful to Drs S. J. Cowley and X. Wu for making their manuscripts 
available to us before publication. Besides that we would like to thank Referee A for 
careful reading of manuscript and numerous helpful comments. Thanks are also due 
to Mr V. G. Mikhalkovsky for his assistance in preparing the English version of the 
paper. 

Appendix. The nonlinear evolution equation for m = 0 
In view of the two-dimensional character of the problem, it is convenient to 

introduce the stream function $: v, = -a$/&, v, = 6$ and to deal with one 
equation : 

Moreover, the solution of the problem is conveniently constructed in a real form. Thus, 
at O(e) of the outer problem 

Here $, is essentially an eigenfunction of equation (2.4) (for m = 0) so that 
$:' = 2B(9 $,(r) cos 8, 8 = kz - wt  -pol  t + @(g). 

We wish to take two factors into account simultaneously: the transition to the 
regime of a nonlinear CL and a viscous broadening of the flow. The transition is 
realized when I, - I N ,  which imposes the condition v = O(e39.  A viscous broadening 
of the external flow provides a contribution to the zeroth harmonic: 

S$, = vp.-'cu(r) + v 2 p P ~ u l ( r )  + ~ ~ p - ~ ~ u ~ ( r )  + . . . , 
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where 

(the explicit form of the other u, is not needed for subsequent calculations). A variation 
of the growth rate caused by the broadening, is 67, - Sll., = O(vp-lQ. The character 
of the evolution will change substantially if Sy, - y, = Ob), i.e. ,U = O(V' /~ ) .  We get 
the scaling 

(A 3) 
Otherwise the procedure of constructing the outer solution is standard, and here we 
give only its inner asymptotic representation (cf. (3.5)) : 

y = 7€3/2, p = €3/4 = O(y1/2), 

II. + $oo = 7 e 3 / 4 c u c  + €(;W:: y2 + 213 cos e) + 7 € 5 / 4 ~ 4  Y + E3/2(2a1 BY cOS e 
+ q2yLulc) + ~'/~q[(a' cos 0 + b' sin 0) [+ f[u: Y2] 
+e2[(wrrr+3wE/r:) Y4/24+2a2 Y2Bcos6'+a~)' c0s28+~~yLu~,  Y] 

+ ee/4 (yc(a; cos 0 + b' sin 8) a1 Y + fq[ur Y3 + 73y3uzc 

WL2 k dc k c d B -  dc 1 {wt[( cdB) 
+2  - cl--- Bcos8---sin8 

52 
where r - r ,  = c1l2Y, = dss(w-c), c, = -k, f, =Arc), 

1 wrrr 3 K 3 k2 a, =-  -+- , a --c+-- +-+--, (ic z) ' - 2 ~ ;  2rck2 4r: 2 

as well as a new MSC: 

bf-b-=-2 c BcosO---sinO Zl [( '  iz) k d c  cdB 1 
12-27[Z3Bcos8, (A4) 

where 

The inner solution is also constructed in the usual fashion. Namely, the function 

(A 5 )  

IF/ = (II. + 1cl0) 6-l is represented as an expansion 

The MSC (A 4) is reduced to a system of two evolution equations 

IF/ = ~ - 1 1 4  @ O )  + @I) + $/4 @z) + &2 @3) + €3/4 9 4 )  + €@5) + €5/4 @ 6 )  + .... 

-Il-2kZ2 - = dY(SsinO), (i 1: s 
(:Il - 2k12) B!$ - (c, Il + q[13) B = d Y (Scos e),  s (A 6b) 
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The main contribution to the right-hand sides of (A 6a)  and (A 6b) is made by the 
term 0(e5l4) of the expansion (A 5). For s" = u.,6$ - $J(' Y we have the equation 

as" as" 
aZ ay 

wi Y-+2kBsinB- 

- 2 ~ :  dB dO 
= ySyy -7 [ c ~ c o s  0 + (c, k -  cz) B sin 01 - 2pwL r<kB sin 0, 

we 

where 

from which we find the quantities involved in the right-hand sides of (A 6a, b): 

dY(s"sin 0) = - i 

where the functions 

dy (9, sin 8)' @,(A) = dy ( g ,  cos 0) s 
and g ,  and g,  satisfy the equation 

Of practical interest are the asymptotic expansions of and @,: 

where 

- -5.52; Q(x)  = 4[2(1 +x)]"~E 
C =  8n{ slrdl[_l_--- 1 

Q ( x )  2 x ( 2 . ~ ) ~ / ~ ] - & }  - 
64 
9x 

Cl = - - ( I e + I i )  z -2.72; 

I ,  = 1:$4-[(2-q2)E(q)-2(1 -q2)K(q)I2 z 0.34; 
E(q) 

a, = kx (g)1/3 r(i) x 1.6057 ; 
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E(q) and K(q) are complete elliptic integrals. 
The function G1 was introduced by Haberman (1972); subsequently, it has been 

calculated by many authors. The function Q2 (in limiting cases h & 1 and A < 1) was 
calculated by Shukhman (1989), and in the limit h 4 1 by GH. Upon substituting (A 7) 
into (A 6a,  b) and dropping 0, we get a NEE in the form 

where 

For illustration, it is convenient to cast (A 8) in terms of ‘physical’ variables: A = 

A connection of the function @ with and Q2, and also an explicit expression for 
constant b are readily obtained from (A 8); they are not given here because they are 
too unwieldy. 
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